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1. INTRODUCTION 
     There are many physical phenomenon in which 

buoyancy evolves from both the thermal and 

concentration diffusion of species contained in the fluid. 

Atmospheric convection, earth warming, and the removal 

of contaminant from a solution are some of the examples 

of such phenomena. Moreover, in the presence of a free 

surface, thermal and concentration buoyancy can also be 

induced by the variation of surface tension. Double-

diffusive Marangoni convection is the phenomena in 

which density and surface tension vary with both 

temperature and concentration gradient. From the view 

point of engineering, a wide range of such phenomena 

occurs in geothermal engineering, removal of nuclear 

waste and electro-chemical processes. 

     Earlier studies of double diffusive convection and 

chemical reaction include the works Lee and Lee [1], 

Vafai et al. [2] and Costa [3]. Jue [5] discussed the aiding 

and opposing effects of thermosolutal Marangoni 

Convection in a cavity. Gelfgat and Yoseph [6] showed 

that the natural convection flow can be suppressed by an 

externally applied magnetic field. Hossain and Wilson 

[7] showed that the uniform internal heat generation 

increases the local heat transfer rate. An investigation of 

double diffusive convection with chemical reaction 

around a sphere is also made by Hossain et al. [8]. 

Hossain et al. [9] also investigated the effect of magnetic 

field on thermocapillary driven convection flow of a 

fluid in an enclosure.  

     It follows that the presence of a chemical reaction can 

have a significant impact on double-diffusive flow and 

heat and mass fluxes, particularly when the heat equation 

is also complemented with internal heat generation, 

which may occur as a result of a chemical  reaction. The 

application of magnetic field may serve the purpose of 

maintaining the stability of such kind of fluid flow. The 

study of magnetic field effect on thermocapillary flow 

with internal heat generation has already been made by 

the same authors [9]. The investigation of the buoyancy 

parameters in the presence of magnetic field, in 

combined thermocapillary and diffusocapillary flow is 

now carried out. A detailed description of the model and 

the solution method is given in the subsequent sections. 

 

 

 

ABSTRACT 
The effect of chemical reaction in the presence of a magnetic field on the onset of double diffusive 

Marangoni convection in a square cavity is numerically studied. ADI method together with the SOR 

technique is used to solve the governing equations. The effect of buoyancy ratio W, diffusocapillary 

ratio w, Schmidt number Sc, and Hartmann number Ha, is investigated. The results show that both the 

average Nusselt number and the average Sherwood number decrease with the increase in Hartmann 

number, whereas both the average heat and mass transfer rates increase with the increase in chemical 

reaction parameter. More over the effect of concentration buoyancy on flow is stronger than the one due 

to thermal buoyancy 
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2. MATHEMATICAL FORMULATION 
     Consider the transient double diffusive flow of a 

Newtonian fluid contained in a square cavity of height H. 

The temperature and mass concentration of right and left 

vertical walls are kept at ,H HT C  
and ,L LT C , where 

,H LT T  H LC C . The density ρ of the fluid with 

temperature and concentration follows the Boussinesq's 

approximation. The surface tension variation at the fluid 

surface with temperature and concentration given by (see 

[5]) 
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where   
0 0( ) / 2, ( ) / 2H L H LT T T C C C    are reference 

temperature and concentration.  The temperature and 

concentration coefficients of surface tension and volume 

expansion are defined as 
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     where T  and C are the temperature and 

concentration of the fluid. Throughout the discussion, the 

subscript „0‟ corresponds to the reference state and the 

subscripts „T‟ and „C‟ respectively refer to the thermal 

and concentration properties. Now further assume that 

the cavity subject to a uniform magnetic field 

B=Bxex+Byey of constant magnitude B0, where ex and ey 

are unit vectors along the coordinate axis, and ξ be the 

orientation of magnetic field. Let σe and φ respectively 

be the electrical conductivity and electric potential of the 

fluid, then the electric current density j and the 

electromagnetic force F for electrically non conducting 

boundaries are given by the relation (see also [9]) 

 
            Fig 1. Physical model of the problem 

J= σe(V×B) 
(3) 

F= σe(V×B)×B 

  

     Where 
x yue e V v the velocity vector is in two 

dimensions in which u  and v  are the velocity 

components of the fluid along the coordinate axes.  The  

flow configuration is shown in figure 1. Here the symbol 

„g‟ stands for the acceleration due to gravity. Now the 

stream vorticity formulation of the governing equations 

in terms of non dimensional variables is given by  
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     Here Ha is the Hartmann number, GrT and GrC are 

respectively the Grashof numbers due to thermal and 

solutal buoyancies, Gr is the total Grashof number, N is 

the ratio of concentration and thermal buoyancies, W is a 

parameter that shows relative impact of concentration 

and thermal buoyancies. Obviously W=0 represents the 

case of only thermal buoyancy, whereas W=1 represents 

only the solutal buoyancy effects. Pr is the Prandtl 

number, GrI  is the Grashof number due to internal heat 

in which S is the volumetric heat generation rate. The 

constant λ is the heat generation parameter, Sc is Schmidt 

number, which is the ratio of viscous and concentration 

diffusivities. Fineally γ is the dimensionless chemical 

reaction parametr, in which K is the rate of chemical 

reaction. The dimensionless form was obtained by 

defining the following transformations  



© ICME2011 3       FL-002 

   

2

2 2

2

0 0

0 0

, , , ,

, , , ,

,
H H

x y t
x y t

H H H

uH H pH H
u p

T T C C

T T C C

 







  

 

   

   

 
 

 

v
v  (9) 

whereas the bar represents the variables in dimensional 

form. The stream vorticity formulation was given by 
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Using the transformations given in (9), the boundary 

conditions are given by 

 

t < 0,  u=v=ψ=θ=ω=ø=0,  0 ≤ x ≤1,  0 ≤ y ≤1 

t ≥ 0 

u=v=ψ= 0,  θ=ø=-1, ω=∂v/∂x, x=0,   0≤ y ≤1 

u=v=ψ= 0,  θ=ø=1, ω=-∂v/∂x, x=0,   0≤ y ≤1 

u=v=ψ= 0,  ∂θ/∂y=∂ø/∂y=0,  

 ω=-∂u/∂y,                                 y=0,   0≤ x ≤1 

(11) 

  

The boundary conditions at the free surface become 
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are respectively the thermal Marangoni number at 

constant concentration MaT, the concentration Marangoni 

number at constant temperature MaC, whereas Ma is the 

total Marangoni number, r is a dimensionless parameter 

that defines the relative impact of solutal and thermal 

Marangoni numbers, and w defines the relative strength 

of thermal and solutal Marangoni effects on the free 

surface.(8). For w=0, only thermocapillary effect comes 

into account whereas w=1 shows the dominance of 

diffusocapillary effect. We now define the local Nusselt 

number and local Sherwood number in dimensionless 

form, along the wall at higher temperature and 

concentration level by the relation 
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where x is the coordinate perpendicular to the wall.  Now 

the average Nusselt number and average Sherwood 

number in dimensionless form, along the right wall is 

given by 
1 1

0 0

,Nu Nudy Sh Shdy    (15) 

  

where dy is the element of length H along the right wall. 

Equations (4) - (7) along with boundary conditions given 

by equations (11) and  (12) are solved numerically to 

study the flow properties of the proposed physical model.  

 
3. METHOD OF SOLUTION  
     The stream function equation (4) is solved using the 

SOR method with residual tolerance of order 10
-5

. From 

these values of stream function, the velocity at each time 

step is updated using the non dimensional form of 

equation (10). For transient equations (5), (6) and (7), 

given the values of flow variables at any time step, we 

used the ADI method to find the values of these variables 

at the next time step. FTCS descretization is used for the 

unsteady, diffusion and source terms in the ADI method. 

For non linear terms, we used the second upwind 

differencing technique. For the entire computation we 

take H=1. The time step for the entire computation is 

taken to be 10
-6

 (see also [4]). For convergence, it was 

considered that for any variable F 
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where i,j is the grid location along the coordinate axes 

and the superscript m refers to the number of time step. 

Intel 1.83 G.Hz Core 2 Duo processing machine is used 

for the entire computation. 

4. RESULTS AND DISCUSSION 
     We have considered the interaction of magnetic field 

and double-diffusive Marangoni convection in a square 

cavity, in the presence of internal heat generation and 

chemical reaction. A temperature and concentration 

difference is maintained at the side walls. The results are 

presented in terms of streamlines, isohalines and heat and 

mass transfer rates for different values of physical 

parameters. 

 

4.1 The Effect of Hartmann number 
     An externally applied magnetic field can be used to 

suppress the instability and reduce the convective flow 

up to a desired level of practical interest (see [6] and [9]). 

Similar effects are observed in the presence of mass 

transfer. That is, for certain values of chemical reaction 
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parameter and Schmidt number, the average Nusselt 

number and average Sherwood number both decrease 

with effect of increasing strength of magnetic field. 

These results are shown in Figure 2 at Gr=2×10
6
, 

Pr=0.054, Ma=4000, ξ=0
o
, λ=γ=1, Sc=10, W=w=0.5 for 

different values of Hartmann number Ha. In figure 2 (a), 

the decrease in the heat transfer rate was now expected, 

however due to suppression of flow instability, the mass 

transfer rate also decreases as shown in figure 2 (b). 

 

 

  
 

Fig 2. (a) Average Nusselt number (b) average 

Sherwood number against time at Gr=2×10
6
, 

Pr=0.054, Ma=4000, ξ=0
o
, λ=γ=1, Sc=10, W=w=0.5 

for different values of Hartmann number Ha. 

 

4.2 Effect of Chemical Reaction Parameter 
 

  
 

Fig 3. Time evolution of (a) Average Nusselt number 

(b) average Sherwood number at Gr=10
6
, Pr=0.054, 

Ma=5000, Ha=50, ξ=0
o
, λ=2, Sc=5, W=w=0.5 for 

different values chemical reaction parameter γ. 
 
     Figure 3 (a) shows the results of average Nusselt, and 

figure 3 (b) shows the average Sherwood number against 

time at Gr=10
6
, Pr=0.054, Ma=5000, Ha=50, ξ=0

o
, 

Sc=5, λ=2, W=w=0.5 for different values of chemical 

reaction parameter γ. Both heat and mass transfer rates 

increase for increasing values of γ. The increase in 

Sherwood number may be due to the reason that the 

increase of the values of γ implies more impact of species 

concentration on momentum and buoyancy. However, as 

can be seen from equation (6), the heat equation does not 

directly depend upon the species concentration; the 

increase in heat transfer is not much pronounced. 

 

4.3 The Effect of W 
     Figure 4 shows the selected results of steady state 

pattern of streamlines at Gr=5×10
5
, Pr=0.054, Ma=2000, 

Ha=20, ξ=0
o
, Sc=γ=λ=5, w=0.5 for W=0,0.5,1.0 

respectively. The cell adjacent to top surface in Figure 

4(a) indicates the presence of counteracting mechanism 

due to thermocapillary effects on buoyancy at W=0. 

Figure 4(b) shows that the flow in the buoyancy cell 

decreases due to opposing flow induced by mass transfer 

in this flow at W=0.5. However at W=1.0, the 

concentration buoyancy is solely responsible for the 

counteracting flow and the flow in the buoyancy cell 

further decreases, as shown in Figure 4(c). Comparing 

the strength of Marangoni cell in Figures 4 (a)-(c), we 

discern that the Marangoni effects that appear due to 

concentration are more pronounced than that of thermal 

effects. This suggests that the contribution of mass 

diffusion is much pronounced, as compared to that of 

thermal buoyancy. This might well be attributed to the 

presence of chemical reaction parameter, which adds to 

the instability of flow mechanism in the diffusion 

 

 
equation, and is ultimately responsible for the reduction 

of the flow due to buoyancy. Figure 5 (a)-(c) represent 

  

  

  
 

Fig 4. Steady state 

pattern of streamlines at 

Gr=5×10
5
,Pr=0.054, 

Ma=2000, Ha=20, ξ=0
o
, 

Sc=γ=λ=5, w=0.5 for (a) 

W=0 (b) W=0.5 (c) 

W=1 

 

Fig 5. Steady state 

pattern of isohalines at 

Gr=5×10
5
,Pr=0.054, 

Ma=2000, Ha=20, 

ξ=0
o
, Sc=γ=λ=5, w=0.5 

for (a) W=0 (b) W=0.5 

(c) W=1 



© ICME2011 5       FL-002 

   

the isolines of concentration at Gr=5×10
5
, Pr=0.054, 

Ma=2000, Ha=20, ξ=0
o
, Sc=γ=λ=5, w=0.5 for 

W=0,0.5,1.0 respectively. Comparing figure 4 and 5, we 

can see that in Figure 5 (a) and (b), there is an empty 

region of low concentration isohalines in the lower half 

where the buoyancy cell was concentrated in the 

streamlines. However, the isohalines are evenly 

distributed in Figure 5 (c), in that region because flow is 

very low. This suggests that the stronger the buoyancy 

cell, the weaker the iso-concentration lines in this region. 

Figure 6 now shows the time evolution of Nusselt 

number and Sherwood number of the right wall at 

Gr=5×10
5
, Pr=0.054, Ma=2000, Ha=20, ξ=0

o
, w=0.5,  

Sc=γ=λ=5 for different values of W. Increase in heat 

transfer rate occurs from 0.33 to 0.98 due to increase in 

concentration buoyancy. However average Sherwood 

number decreases since the concentration of isolines 

close to the sidewalls decreases. 

 

  
 

Fig 6. (a) Average Nusselt number (b) average 

Sherwood number against time at Gr=5×10
5
, 

Pr=0.054, Ma=2000, Ha=20, ξ=0
o
, Sc=γ=λ=5, 

w=0.5 for different values of W 

 
4.4 The Effect of Schmidt number  

     The phenomenon of Marangoni convection is more 

common in liquid metals. It is due to this reason that we 

are considering the Prandtl number as low as 0.054. Such 

kind of materials has generally high viscous diffusivity. 

Therefore the heat and mass transfer is studied 

Gr=4×10
5
, Pr=0.054, Ma=4000, Ha=40, ξ=0

o
, λ=γ=5, 

W=w=0.5 for the values of Schmidt number 25≤ Sc≤100, 

given by figure 7 (a) and 7 (b) respectively. The increase 

in the value of Schmidt number decrease the 

concentration diffusion, which slightly reduces the flow 

and thus heat transfer, whereas the increase in diffusive 

convection causes mass transfer rate to increase. 

However both these changes become less significant for 

increasing values of Schmidt number, rather  both the 

Nusselt number and the Sherwood number nearly remain 

unchanged for Sc>100. 

 

  
 

Fig 7. (a) Average heat transfer (b) average mass 

transfer rate at Gr=4×10
5
, Pr=0.054, Ma=4000, Ha=40, 

ξ=0
o
, γ=λ=5, W=w=0.5 for different values of Sc 

 
5. CONCLUSION 

     An investigation of the effect of magnetic field on 

double diffusive Marangoni convection in a cavity has 

been carried out. The vertical walls of the cavity were 

subject to horizontal temperature and concentration 

gradients. The results reveal that the concentration 

buoyancy has a stronger impact on the flow strength, 

compare to the thermal buoyancy, due to the presence of 

chemical reaction. Both the heat and mass transfer rate 

decrease with the increase in Hartmann number, whereas 

the heat and mass transfer rate increases with the 

increase in chemical reaction parameter. It should be 

noted here that this decrease in heat transfer is subject to 

the values of parameters chosen. That is for large internal 

heat generation and large chemical reaction parameter, 

the result would not be the same. That is, the heat 

transfer will not always decrease with the increase in 

Hartmann number and its orientation, for all values of 

internal heat generation and chemical reaction 

parameters. Thus a detailed investigation will further be 

made to assume these parameter values for which the 

magnetic field suppresses the flow in such 

configurations. 
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Symbol Meaning Unit 

B uniform magnetic field vector Tesla 

C  mass concentration Kgm
-3

 

D Concentration diffusivity m
2
s

-1
 

F Electromagnetic force N 

G acceleration due to gravity ms
-2

 

Gr total Grashof number  

H height of the cavity m 

Ha Hartmann number  

J current density Am
-2

 

K chemical reaction rate s
-1

 

K thermal conductivity Wm
-1

K
-1

 

Ma total Marangoni number  

Nu  Average Nusselt number  

p  Fluid pressure Pa 

Pr Prandtl number  

Sc Schmidt number  

Sh  Average Sherwood number  

T  Dimensional temperature K 

t  Dimensional time s 

,u v  Velocity components ms
-1

 

W Solutal buoyancy parameter  

,x y  Dimensional coordinate axes m 

Α Thermal diffusivity m
2
s

-1
 

βT thermal expansion coefficient K
-1

 

βC 
concentration expansion 

coefficient 
m

3
Kg

-1
 

C  
concentration coefficient of 

surface tension 
m

3
Kg

-1
 

T  
temperature coefficient of 

surface tension 
K

-1
 

µ dynamic viscosity Kg m
-1

 s
-1

 

Ν kinematic viscosity m
2
s

-1
 

Ρ density of fluid Kgm
-3

 

Σ surface tension Nm
-1

 

σe Electrical conductivity Ω
-1

m
-1
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